

Academic Year 2019/2020 First Semester

Benha Faculty of Engineering Department of Basic Sciences

Physics I (B1031) – Course Specs

Instructor:	Prof. Dr Tarek M. Abdolkader				
E-mail:	tarek.hassan01@bhit.bu.edu.eg				
Objectives:	Upon successful completion of this course, the student should be able to demonstrate knowledge of basic concepts of electricity and magnetism and to apply this knowledge efficiently to solve problems and to perform Laboratory experiments under controlled guidance and supervision. Moreover, the course aims to develop the spirit of cooperation with others and working in a team.				
Text:	Lecture notes				
Reference:	Raymond A. Serway and John W. Jewett, " <i>Physics for Scientists and Engineers with Modern Physics</i> ", 9 th edition, Brooks Cole, 2013.				
	1- http://www.bu.edu.eg/staff/tarekhassan015				
	2- http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html				
	3- http://www.learnerstv.com/lectures.php?course=ltv008&cat=Physics				
Online Resources	4- http://www.nvcc.edu/home/nvmajew/new/Phy232/lectures.html				
	5- http://hazemsakeek.com/magazine/				

Course Topics:

Торіс	Hours
The Electric Field	4
Gauss Law	4
The electric potential	4
Capacitance	
Current and resistance	2
Magnetic field	
Ampere's Law	
Faraday's Law	
Inductance	

Learning Outcomes:

Upon completion of the course, students will be able to

- 1. define and calculate electric force and electric field.
- 2. apply Gauss's law to calculate the electric filed due to various charge configurations.
- 3. define and calculate the electric potential and relate it to the electric field.
- 4. define and calculate the capacitance of various conductors
- 5. define and calculate the electric current and electric resistance.
- 6. define and calculate the magnetic field of moving charges and electric currents
- 7. Apply Ampere's law to calculate the magnetic field due to various current configurations.
- 8. Apply Faraday's law to calculate the induced emf in a conductor.
- 9. Define and calculate the inductance of various inductors.

<u>Time Plan</u>

Week	Date	Lecture1	Lecture2	Lab.	Notes
1	22/9/2019	Ch0: Units and Dimensions	Ch1: Electric Field		
2	29/9/2019	Ch1: Electric Field	Exercises on Ch1	Exp. 1	
3	6/10/2019	Ch2: Gauss' Law	Ch2: Gauss' Law	Exp. 2	Holliday (6/10)
4	13/10/2019	Ch3: Electric Potential	Exercises on Ch2&3	Exp. 3	Quiz #1
5	20/10/2019	Ch3: Electric Potential	Ch4: Capacitance	Exp. 4	
6	27/10/2019	Ch4: Capacitance	Exercises on Ch3&4	Exp. 5	
7	3/11/2019	Revision Ch(1-4)	Ch5: electric current	Lab Exam <mark>#1</mark>	Midterm Exam
8	10/11/2019	Ch6: Magnetic Field	Exercises on Ch5&6	Exp. 6	
9	17/11/2019	Ch6: Magnetic Field	Ch7: Ampere's Law	Exp. 7	Holliday (20/11)
10	24/11/2019	Ch7: Ampere's Law	Exercises on Ch6&7	Exp. 8	
11	1/12/2019	Ch8: Faraday's Law	Ch8: Faraday's Law	Exp. 9	Quiz #2
12	8/12/2019	Ch9: Inductance	Exercises on Ch8&9	Exp. 10	
13	15/12/2019	Revision	Exercises (revision)	Lab Exam #2	
14	22/12/2019		Lob Final From		
15	29/12/2019	Laurinartixam			
16	Final Written Exam				

Notes:

- **1.** There are two Quizzes on the theoretical lectures (5 marks each) at weeks 4 and 11
- 2. There are two Quizzes on the Lab (5 marks each) at weeks 7 and 13
- 3. The Midterm Exam (20 marks) on the theoretical lectures will be at week 7 or 8
- **4.** The final Lab Exam will start at week 14
- 5. The final written Exam will start at week 16

Grading Policy

Semester works	Lab	Final Exam	Total
30	30	90	150

Semester works 30	Quiz #1 5	The first Quiz is at the 5 th week
	Midterm Exam 20	The first Major Exam is after the 5 th week
	Quiz #2 5	The second Quiz is at the 12 th week
Lab 30	Lab semester works 10	Performing experiments, solving pre-lab questions, and discipline
	Lab quizzes 10	The first quiz is after finishing 5 experiments and the second is after finishing the other 5 experiments
	Final lab exam 10	Final Lab exam is to be held after 13 th week.
Final exam 90		